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Abstract

The extensive use of computers and networks worldwide
has raised the awareness of the need for tools and tech-
niques to aid in computer security analysis of binary code,
such as the understanding of viruses, trojans, worms, back-
doors and general security flaws, in order to provide imme-
diate solutions with or without the aid of software vendors.

This paper is a proposal for a high-level debugging tool
to be used by computer security experts, which will reduce
the amount of time needed in order to solve security-related
problems in executable programs. The current state of the
art involves the tracing of thousands of lines of assembly
code using a standard debugger.

A high-level debugger would be capable of displaying a
high-level representation of an executable program in the
C language, hence reducing the number of lines that need
to be inspected by an order of magnitude (i.e. hundreds in-
stead of thousands of lines). Effectively, these techniques
will help in reducing the amount of time needed to trace a
security flaw in an executable program, as well as reducing
the costs of acquiring or training skilled assembler engi-
neers.

1. Motivation

Computer viruses are instructions in a program that use
the facilities of an operating environment (such as an op-
erating system or a word processor) to propagate them-
selves into files on a computer system, and often perform
some malicious action (for example, the CIH/Chernobyl
virus [4]). This type of virus has caused thousands of dol-
lars of lost revenue due to infection of many large organ-
isations, including Intel, AT&T, Compaq and Boeing, and
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tens of thousands of computers worldwide. The extent of
disruption has been so serious that even the FBI has been
involved in investigating who is responsible for such mali-
cious viruses.

A computer worm is a program that uses network facil-
ities, such as email, to propagate itself from computer to
computer. The recent appearance of the Melissa virus and
other Visual Basic scripting viruses, which both infect files
and propagate themselves via email, has blurred the distinc-
tion between virus and worm.

Microsoft’s Internet Information Server (IIS) is the most
common Web server used under WindowsNT. It is esti-
mated that IIS runs on 22.3% of the web servers on the In-
ternet. In early June 1999, a security flaw in IIS was found,
and anexploit made available, which allowed people with
modest programming skills to gain complete control over a
web server running IIS [12]. Clearly, this type of security
vulnerability on a mission-critical application used by mil-
lions of businesses every day can jeopardize corporate data
that resides on servers and cost thousands of dollars to such
companies. In comparison, Apache runs on an estimated
60% of web servers on the Internet and is protected from
such wide spread attacks by a proactive security commu-
nity, due primarily to its publicly available source code.

Computer viruses and web server flaws are just two ex-
amples of numerous computer security related vulnerabili-
ties, commonly known as “malware.” Malware is a generic
term that describes the malicious side effects caused by
computer programs, whether caused by intentionally intro-
duced malicious code or by the malicious exploitation of
benign code to the detriment of the user [13]. Worldwide,
computer network security teams have been created in order
to provide for timely information and solutions related to
malware. Examples include AusCERT, Australia’s CERT
(computer emergency response team) team hosted at The
University of Queensland, and CERT, its US counterpart,
hosted at Carnegie Mellon University. The current tech-
nique used to study malware is the use of a debugger to step



the executable program one assembly line at a time until the
problem is found—it is then possible to reconstruct that part
of the traced program in order to provide a solution for it.
This method requires an expert engineer that understands
assembly code—a skill that is disappearing as years go by,
due to the increasing use of higher-level languages such as
C++ and Java.

This paper is our proposal for the development of tech-
niques and tools to support debugging at a higher level of
abstraction. Rather than the security expert having to trace
thousands of lines of assembly code, an order of magnitude
less would be provided (i.e. hundreds of lines of high-level
code) through the proposed environment. By reducing the
amount of code that the engineer has to process, and by
presenting the engineer with a higher level of abstraction,
fewer man-hours will be needed in order to understand the
program’s code. Understanding the code that is part of the
virus or that provides access to a backdoor in a program
allows the engineer to develop a solution to the problem,
with or without the aid of software vendors. Clearly, the
techniques proposed in this project will provide computer
security organisations with the ability to provide solutions
to Internet security vulnerabilities in a more timely manner,
hence reducing the amount of losses to companies that use
Internet mission-critical applications in one way or another
(for example, web servers and email). Further, these tech-
niques will allow engineers who are not necessarily experts
in assembly code, to aid in the understanding of code, hence
reducing the additional skills and training required for pro-
fessionals working in network security teams.

2. State of the Art

Security vulnerabilities in programs (e.g. backdoors or
viruses) are commonly found in one of two ways: it is re-
ported by users of programs or by network security teams
actually testing programs for security flaws. In either case,
network security teams worldwide use the current state-of-
the-art to determine the code of the executable program that
causes the flaw, and then find a way to patch the program
to provide a solution to it. Current tools involve the use
of NuMega’s SoftIce, a Pentium/Windows advanced debug-
ger, gdb, a Unix debugger, or Data Rescue’s IDAPro disas-
sembler [19].

Debugging tools were originally created to trace the
paths that a program follows at execution time, in order to
find where a program “crashes” due to an error in the pro-
gram. Debuggers are normally written for particular high-
level languages, such as C++, C and Java, and require a soft-
ware developer to compile the program with a debugging
option, which stores extra debugging information into the
executable program. In this way, when the program runs,
it can be debugged by associating lines of assembly code

to their high-level counterpart lines (for each line of high-
level code, there are n lines of assembly code), given that
both, the source code and the executable code version are
available to the developer. Debugging information makes
executable files larger, hence, this information is generally
not included in the final release version of a program. Tools
like SoftIce andgdb assume that this type of information
exists in the file to provide valuable debugging information
to a user. In the event that the information is not there, these
tools can only allow a user to follow paths of a program by
looking at the assembly code in the program, without any
knowledge of its equivalent high-level code; this “raw” as-
sembler view is the one commonly used in the debugging
of malware code, as such programs are developed by teams
external to the debugging team.

pushl $.LC0
call getenv
addl $4,%esp
movl %eax,%eax
pushl %eax
leal -512(%ebp),%eax
pushl %eax
call strcpy
addl $8,%esp

Figure 1. Example Pentium Assembly Code
for Security-related Problem

Figure 1 gives an example of a simple piece of assembly
code that is commonly found in security-related problems.
In this code, the program calls the get environment func-
tion (getenv ) with the stringTERM(for terminal; located
at label.LC0 ). The program then copies the string in the
TERMvariable to a local string array variable on the stack,
of size 512 bytes. This type of code is commonly used to
overflow an array as theTERMvariable can be set to be any
string, including strings longer than 512 bytes. Once the
program performs a buffer overflow, the program’s stack is
overwritten by the excess bytes in theTERMstring, and such
bytes can include instructions that the computer is coerced
to execute—such instructions may constitute a security is-
sue.

2.1. Life Cycle of a Security Flaw

We describe a typical life cycle of a security flaw to illus-
trate the process used today and why a better/faster solution
is needed.

� A security team sets out to find a flaw in some software
product.

� The team finds possible security flaws and posts their
suspicions to a security mailing list likebugtraq ,



calling for the vendor to fix the possible bug.

� The vendor either fixes the bug, does not even see the
report or refuses to fix the bug because it is “not an
immediate threat”.

� The security team (or a different one), writes anexploit
that demonstrates that the bug is indeed a security flaw
and should be fixed by the vendor.

� The security team contacts the vendor and demon-
strates that the flaw is serious.

� At this point, the vendor may decide to collaborate:

– The vendor makes binary patches to their prod-
uct, essentially by changing the source code, re-
compiling it, and providing the new executable
file or the single library that the flaw is contained
in.

– The security team posts the patches and gets the
credit for fixing the bug.

– CERT, AusCERT and similar companies pick up
the patches, ignore the exploit, and create anad-
visorywhich tells normal users what to do in or-
der to install the patch and why it is needed.

Alternatively, the vendor does not collaborate:

– The software vendor does not believe the security
team, does not think it is profitable to fix the bug,
or otherwise does not care about the bug.

– The security team alerts others about the problem
by releasing the exploit on their web site (taking
the moral high ground of “full disclosure”) and
stating that the software vendor does not care to
fix the bug.

– The software vendor gets embarrased and re-
leases a patch to fix the bug, or gets stubborn and
argues about whether the flaw is “theoretical” or
not.

The time between the first posting on a security mail-
ing list like bugtraq and the CERT advisory to the gen-
eral community is very long; it can take months before a
solution is widely advertised. In the mean time, hackers,
who commonly read security mailing lists, take advantage
of these bugs by writing their own exploits.

Instead, we propose an alternative to this life cycle, by
providing security teams with better debugging tools, once
a bug has been identified in a system, the team could provide
a patch to it and go to the vendor with that patch, so that the
vendor either releases its own patch, reuses the one provided
by the security team, or decides to do nothing. In all cases,
the security team can release a patch in atimelymanner for
the general community to use straight away.

3. A High-Level Debugger of Executable Code

The proposed high-level debugger would operate with
existing executable files (that do not have debugging infor-
mation stored in them), without assuming any access to the
source code for that program. The debugger would allow
users to debug executables for a variety of CISC and RISC
machines, and would produce high-level code in the C lan-
guage as output, as well as providing links to the associated
assembly representation for that C code. The quality of the
C code produced would be comparable to that written by
a structured software developer, rather than assembly code
written in C (i.e. an order of magnitude less lines of code).
The C language was chosen because it is commonly used in
the security area and many security-related flaws are orig-
inally written in C. Recovery from hand-written assembly
code may not always be expressable in high-level code, in
which case, inline assembly code can be used.

In more detail, the aims of this project are:

� To design high-level debugging techniques by dy-
namic decompilation of machine code into assembly
code and then to C code. Dynamic techniques work
online, at runtime, while the user debugs (i.e. exam-
ines) the program.

� To develop a graphical user interface that can display
the recovered C code and associate it with the underly-
ing assembly code.

� To support a variety of CISC and RISC machines in a
machine-independent way.

The following sections describe how these aims can be
achieved.

3.1. Dynamic Decompilation of Executable Code

The feasibility of static decompilation techniques, to re-
cover some high-level form of a program, has been shown
in the literature; examples include, Cifuentes’ dcc de-
compiler [9, 5, 6], SourceAgain [1], the 8086 C decom-
piler [14, 15], O’Gorman’s work [21] and more. These tech-
niques have been developed over a period of over 30 years,
with Halstead [16, 17, 18] making the original contributions
to this area, in the context of the NELIAC language, as well
as Caudle [3].

The techniques described by Cifuentes were imple-
mented in the dcc decompiler, a prototype static 80286 de-
compiler of MS-DOS executable files. The quality of the
recovered code approached that written by a structured soft-
ware developer, in terms of the control flow abstractions
used in the program and the instructions recovered, but did
not include high-level types or meaningful variable names



(as these are not stored in the executable). These techniques
were the basis for the SourceAgain Java decompiler. In the
case of Java, typing information is contained in the “ex-
ecutable” class file, which gets interpreted or compiled at
runtime. However, in the case of machine code executable
programs, type information isnot stored in the file, there-
fore the need for type recovery. Mycroft’s work [20] on
type recovery analysis based on RTL (register transfer) rep-
resentations can provide code that more closely resembles
typed high-level source code.

Nevertheless, one limitation exists with static tech-
niques, which is inherent to the nature of current von Neu-
mann machines. In von Neumann machines, code and data
are represented in the same way, hence making it impossi-
ble to completely distinguish code from datastatically. This
means that a complete decompilation of a program may not
always be possible.

The limitations of static decompilation are overcomed
in a dynamic environment, where paths in a program are
followed and decompiled “on the fly”, as the program is
debugged. When the program reaches an indirect transfer
of control, only one value will be possible at that point in
the program, and it will be known at runtime (unlike dur-
ing static translation). Although this technique may sound
like a natural extension of debugging techniques, an ex-
tensive search on tools used in this area reveals that this
technique has not been used in debugging because debug-
gers are normally written for checking/debuggingwhile you
write a program (i.e. when you have the source code), rather
than after the program has been shipped and the source code
is unavailable.

3.2. High-Level Debugger Interface

Figure 2 shows the graphical view of the proposed high-
level debugger. On the left-hand side, the assembly code
is displayed, and on the right-hand side the equivalent C
code is displayed. Note that the 14 assembly instructions on
the left of the first window are equivalent to the one high-
level C instruction on the right. As can be seen, parameters
to both procedures have been recovered and placed in the
actual parameter list. Further, since there is a local variable
of 512 bytes used in the call tostrcpy , that variable is
given a name (for example,loc1 ) as the name is not stored
in the executable file being debugged. The user of this tool
can then change names of local variables as needed (e.g.
changeloc1 for buf as in this example).

The development of dynamic decompilation techniques
needs to trade off quality of recovered code for perfor-
mance, as the dynamic debugger would recover high-level
code as the paths in the program are traced and the user is
waiting to see the results. This implies that efficient tech-
niques to perform data flow, control flow and type analy-

ses are needed, without being able to spend too much time
on performing such analyses. Therefore, to lift the level of
representation, incremental analyses can be performed so
that code that is in paths constantly executed will be “opti-
mised”, that is, retranslated using more expensive analyses,
so that better quality code can be created. This incremental
improvement of the code is possible because more infor-
mation is known about a program once more paths of the
program have been executed. Further, idle time in the pro-
gram can be used by a background analyser to improve the
quality of the decompiled code.

In Figure 2, two techniques were used to recover the
one high-level C statement—data flow analysis and param-
eter analysis. Existing data flow techniques can be easily
adapted to dynamic translation. The recovery of parame-
ters is more involved and will require more context infor-
mation in some cases, hence requiring optimisation. In the
example, the recovery of parameters was straightforward.
The example does not show code that requires control flow
analysis techniques to be used. These well developed tech-
niques recover loops and conditional transfers of control,
hence they require more context information, which can be
achieved by retranslating pieces of code once more paths of
the program have been executed; i.e. performing optimisa-
tions on the translated code.

3.3. Retargetability

A system is said to be retargetable if it can easily and
quickly support a newtargetmachine, whether it is for code
generation purposes (e.g. in a compiler or an optimizer) or
for decoding of an executable file (e.g. in a binary transla-
tor’s frontend).

A key technique in a retargetable system is the repre-
sentation of the semantics of the machine’s instructions for
analysis purposes. In many cases, a register transfer nota-
tion is used, such as that used by the optimizer VPO [2],
GNU’s gcc suite [23] and the binary translation framework
UQBT [8, 7].

Our current work on retargetable binary translation [8, 7]
has shown that the machine-dependent aspects of CISC and
RISC machines can be specified in a variety of languages
so that an intermediate representation of such instructions
in the form of register transfers (RTLs) can be created for
the purpose of analysis. These techniques have shown that
the RTL representation is suitable for analysis of RISC and
CISC machine code, and hence would be appropriate for de-
compilation analyses. In the case of binary translation, the
recovery of machine code is performed to a pseudo high-
level representation called HRTL, which is then brought
down to machine code level for a target machine. The
UQBT framework is illustrated in Figure 3.

For decompilation, only the first half of the system is



Figure 2. Graphical View of a High-Level Debugger
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Figure 3. The UQBT Binary Translation
Framework

needed; namely, the part that transforms the source/input
binary file to the HRTL representation. A different backend
then needs to be coupled to produce a higher level repre-
sentation that performs high-level control flow recovery and
performs type analysis.

Retargetability is supported in the UQBT framework by
means of specification languages, APIs and pluggable mod-

ules; these are seen in Figure 3 and are as follows:

� APIs: UQBT provides the binary-file format and the
control transfer APIs. In the case of binary (exe-
cutable) files, its internal representation varies from
one format to another (e.g. Elf, PE, PRC), but all repre-
sentations have a way of extracting the code and data
for the executable program—this type of information
is the one obtained through the API. For control trans-
fers, the API requires the developer to identify condi-
tional branches from unconditional branches, as well
as calls and returns. This is because all these instruc-
tions look like jumps but have slightly different seman-
tics.

� Specification languages: UQBT uses 3 specification
languages to describe different concepts of a machine
or conventions used by the OS:

– SLED (Specification Language for Encoding and
Decoding): This language is part of the New Jer-
sey Machine Code toolkit [22] and allows users
to specify thesyntaxof machine instructions.

– SSL (Semantic Specification Language): This
UQBT language allows users to specify the
meaning of assembly instructions by means of
register transfers [10].

– PAL (Procedural Abstraction Language): This
UQBT language allows users to specify the ABI



conventions used by the OS for calling proce-
dures, passing parameters and returning values,
as well as locations in the stack frame where lo-
cal variables and other information is placed [11].

� Machine-specific analyses: these are extra analyses
that may need to be introduced in the translation in or-
der to completely transform Ms-RTL code into HRTL,
in such a way that machine-dependencies are success-
fully removed. Examples of such analyses include, re-
moval of delayed transfers of control on SPARC, and
the transformation of stack-based floating point code
into register-based code on Pentium.

4. Summary

In this paper we have described the current state of the
art to uncover security flaws in programs, and we have pro-
posed an alternativehigh-level debuggerto aid in the under-
standing of security flaws in programs.

The proposed high-level debugger incorporates decom-
pilation techniques in order to more readily provide to the
security expert fewer number of lines of code to be traced
and understood.

The techniques described in this paper work in the con-
text of no source code or debugging information being
available, which is normally the case when a security prob-
lem is identified in software.

As part of the implementation for this proposed high-
level debugger, the frontend of the retargetable UQBT bi-
nary translation project can be reused, in effect only leaving
the implementation of control and type analyses in order
to achieve high-level code that resembles that written in a
high-level language such a C.
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